Abstract

Inspired by identifying directions through the geomagnetic field for migrating birds, in this work, we proposed and fabricated a single-joint worm-like robot with a centimeter scale, the motion of which could be easily guided by a magnet. The robot consists of a pneumatic deformable bellow and a permanent magnet fixed in the bellow’s head that will generate magnetic force and friction. Firstly, in order to clarify the actuating mechanism, we derived the relationship between the elongation of the bellows and the air pressure through the Yeoh constitutive model, which was utilized to optimize the structural parameters of the bellow. Then the casting method is introduced to fabricate the silicone bellow with a size of 20 mm in diameter and 28 mm in length. The manufacturing error of the bellow was evaluated by 3D laser scanning technology. Thereafter, the robot’s moving posture was analyzed by considering the force and corresponding motion state, and the analysis model was established by mechanics theory. The experimental results show that the worm-like robot’s maximum speed can reach 9.6 mm/s on the cardboard. Meanwhile, it exhibits excellent environmental adaptability that can move in pipelines with a diameter of 21 mm, 32 mm, 40 mm, and 50 mm, and surfaces with different roughness. Moreover, the robot’s motion was successfully guided under the presence of the magnetic field, which shows great potential for pipeline detection applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.