Abstract

In all kingdoms of life, ATP binding cassette (ABC) transporters are essential to many cellular functions. In this large superfamily of proteins, two catalytic sites hydrolyze ATP to power uphill substrate translocation. A central question in the field concerns the relationship between the two ATPase catalytic sites: Are the sites independent of one another? Are both needed for function? Do they function cooperatively? These issues have been resolved for type I ABC transporters but never for a type II ABC transporter. The many mechanistic differences between type I and type II ABC transporters raise the question whether in respect to ATP hydrolysis the two subtypes are similar or different. We have addressed this question by studying the Escherichia coli vitamin B12 type II ABC transporter BtuCD. We have constructed and purified a series of BtuCD variants where both, one, or none of the ATPase sites were rendered inactive by mutation. We find that, in a membrane environment, the ATPase sites of BtuCD are highly cooperative with a Hill coefficient of 2. We also find that, when one of the ATPase sites is inactive, ATP hydrolysis and vitamin B12 transport by BtuCD is reduced by 95%. These exact features are also shared by the archetypical type I maltose ABC transporter. Remarkably, mutants that have lost 95% of their ATPase and transport capabilities still retain the ability to fully use vitamin B12 in vivo. The results demonstrate that, despite the many differences between type I and type II ABC transporters, the fundamental mechanism of ATP hydrolysis remains conserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.