Abstract

Metabolomics is a powerful tool for studying physiological state of the system. In this study, we proposed a single-injection targeted metabolomics method to identify reliable tripterygium glycosides efficacy and toxicity related biomarkers based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Through careful optimization of the UHPLC-MS/MS conditions, a total of 289 metabolites can be quantified in single-injection of 27 min using both positive and negative scanning modes with rapid polarity switching. Tripterygium glycosides is widely used in clinical for its excellent anti-inflammatory and immunosuppressive functions. However, it is the most common drug that can cause hepatotoxicity. In this study, the established metabolomics method was used for determination of biomarkers to reflect tripterygium glycosides efficacy and toxicity. Two different dosages were designed in the animal experiment, including therapeutic dosage and toxic dosage. Statistical analysis based on metabolite concentrations showed that the glutathione metabolism and pyrimidine metabolism were the obvious interfering pathways. This was highly consistent with previous studies. A total of 22 and 47 metabolites were screened as potential biomarkers related to the efficacy and hepatotoxicity of tripterygium glycosides, respectively. Receiver operating characteristic curve (ROC) analysis showed that ten metabolites, including cytosine, 5-methyluridine, deoxyuridine, 5-methylcytidine, deoxycytidine triphosphate (DCTP), keto-glutarate, d-ribose, dihydrofolate, nordeoxycholic acid and isodeoxycholic acid possessed area under the curve (AUC) of 1. The metabolites filtered here can better distinguish tripterygium glycosides treated rats from the control rats compared with the traditional blood indicators of liver function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.