Abstract
The RNA-guided endonuclease Cas9 (CRISPR-Cas9) genome editing system has been widely used for biomedical research and holds great potential for therapeutic applications in eukaryotes. The conventional vector-based CRISPR-Cas9 delivery system requires two different RNA polymerase promoters for expression of the guide RNA (gRNA) and Cas9 endonuclease. The large size and relative complexity of such CRISPR transgene cassettes impede their broad implementation, especially in gene therapy applications with viral vectors that have a limited packaging capacity. Here, we report the design of a single-promoter-driven CRISPR-Cas9 system that uses the dual-polymerase (Pol II and Pol III) activity of the H1 promoter. This size reduction strategy of the vector insert provides a significant titer advantage in the lentiviral vector over the regular CRISPR system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.