Abstract

The volatile compound 2,4,5-trimethylthiazoline (TMT, a synthetic predator scent) triggers fear, anxiety, and defensive responses in rodents that can outlast the encounter. The receptor systems underlying the development and persistence of TMT-induced behavioral changes remain poorly characterized, especially in females. Kappa opioid receptors regulate threat generalization and fear conditioning and alter basal anxiety, but their role in unconditioned fear responses in females has not been examined. Here, we investigated the effects of the long-lasting kappa opioid receptor antagonist, nor-binalthorphinmine dihydrochloride (nor-BNI; 10 mg/kg), on TMT-induced freezing and conditioned place aversion in female mice. We also measured anxiety-like behavior in the elevated plus maze three days after TMT and freezing behavior when returned to the TMT-paired context ten days after the single exposure. We found that 35μl of 10 % TMT elicited a robust freezing response during a five-minute exposure in female mice. TMT evoked persistent fear as measured by conditioned place aversion, reduced entries into the open arm of the elevated plus maze, and increased general freezing behavior long after TMT exposure. In line with the known role of kappa-opioid receptors in threat generalization, we found that kappa-opioid receptor antagonism increased basal freezing but reduced freezing during TMT presentation. Together, these findings indicate that a single exposure to TMT causes long-lasting changes in fear-related behavioral responses in female mice and highlights the modulatory role of kappa-opioid receptor signaling on fear-related behavioral patterns in females.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call