Abstract

Soft features in electronic devices have provided an opportunity of gleaning a wide spectrum of intimate biosignals. Lack of data processing tools in a soft form, however, proclaims the need of bulky wires or low‐performance near‐field communication externally linked to a “rigid” processor board, thus tarnishing the true meaning of “soft” electronics. Furthermore, although of rising interest in stretchable hybrid electronics, lack of consideration in multilayer, miniaturized design and system‐level data computing limits their practical use. The results presented here form the basis of fully printable, system‐level soft electronics for practical data processing and computing with advanced capabilities of universal circuit design and multilayer device integration into a single platform. Single droplet printing‐based integration of rigid islands and core–shell vertical interconnect access (via) into a common soft matrix with a symmetric arrangement leads to a double‐side universal soft electronic platform that features site‐selective, simultaneous double‐side strain isolation, and vertical interconnection, respectively. Systematic studies of island‐morphology engineering, surface‐strain mapping, and electrical analysis of the platform propose optimized designs. Commensurate with the universal layout, a complete example of double‐side integrated, stretchable 1 MHz binary decoders comprised of 36 logic gates interacting with 9 vias is demonstrated by printing‐based, double‐side electronic functionalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.