Abstract

Formulations of human papillomavirus (HPV) 16, 18, and 31 L1 capsomere protein antigens were spray dried to obtain glassy microspheres that were then coated by atomic layer deposition (ALD) with nanometer-thin protective layers of alumina. Spray-drying was used to formulate human papillomavirus (HPV) 16, 18, and 31 L1 capsomere protein antigens within glassy microspheres to which nanoscopic protective layers of alumina were applied using ALD. Suspensions of alumina-coated, capsomere-containing microparticles were administered in a single dose to mice. ALD-deposited alumina coatings provided thermostability and a delayed in vivo release of capsomere antigens, incorporating both a prime and a boost dose in one injection. Total serotype-specific antibody titers as well as neutralizing titers determined from pseudovirus infectivity assays were unaffected by incubation of the ALD-coated vaccines for at 4, 50, or 70 °C for three months prior to administration. In addition, even after incubation for three months at 70 °C, single doses of ALD-coated vaccines produced both higher total antibody responses and higher neutralizing responses than control immunizations that used two doses of conventional liquid formulations stored at 4 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call