Abstract

Stiction is one of the most common problems in the spring-diaphragm type control valves, which are widely used in the process industry. In this paper, a procedure for single curve piecewise fitting stiction detection method and quantifying valve stiction in control loops based on ant colony optimization has been proposed. The single curve piecewise fitting method of detecting valve stiction is based on the qualitative analysis of the control signals. The basic idea of this method is to fit two different functions, triangular wave and sinusoidal wave, to the controller output data. The calculation of stiction index (SI) is introduced based on the proposed method to facilitate the automatic detection of stiction. A better fit to a triangular wave indicates valve stiction, while a better fit to a sinusoidal wave indicates nonstiction. This method is time saving and easiest method for detecting the stiction. Ant colony optimization (ACO), an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model estimated using ant colony optimization, from the input–output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.