Abstract

AbstractAn atmospheric global climate model (GCM) and its associated single-column model are used to study the tropical upper tropospheric warming and elucidate how different processes drive this warming. In this modeling framework, on average the direct radiative process accounts for 13% of the total warming. The radiation increases the atmospheric lapse rate and triggers more convection, which further produces 74% of the total warming. The rest 13% is attributable to the circulation adjustment. The relative importance of these processes differs in different regions. In the deep tropics, the radiative-convective adjustment produces the most significant warming and accounts for almost 100% of the total warming. In the subtropics, the radiative-convective adjustment accounts for 73% of the total warming and the circulation adjustment plays a more important role than in the deep tropics, especially at the levels above 200 hPa. When the lateral boundary conditions, i.e. the temperature and water vapor advections, are held fixed in single-column simulations, the tropospheric relative humidity significantly increases in the radiative-convective adjustment in response to the surface warming. This result, in contrast to the relative humidity conservation behavior in the GCM, highlights the importance of circulation adjustment in maintaining the constant relative humidity. The tropical upper tropospheric warming in both the full GCM and the single-column simulations is found to be less strong than the warming predicted by reference moist adiabats. This evidences that the sub-moist-adiabat warming occurs even without the dilution effect of the large-scale circulation adjustment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call