Abstract

This letter presents an adaptation to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the generalized single-channel (SC) algorithm developed by JimE?nez-MuN?oz and Sobrino, also adapted to the Landsat thermal-infrared (TIR) channel (band 6) later by JimE?nez-MuN?oz The SC algorithm relies on the concept of atmospheric functions (AFs), which are dependent on atmospheric transmissivity, upwelling, and downwelling atmospheric radiances. These AFs are fitted versus the atmospheric water-vapor content for operational purposes, despite the fact that other computation options are also possible. The SC algorithm has been adapted to ASTER TIR bands 13 (10.659 ?m) and 14 (11.289 ?m), located in the typical split-window region (10.5-12 ?m), where transmission through the atmosphere is higher and surface emissivity variations are lower in comparison with the ones in the 8-9.4 ?m spectral region. Land-surface temperature retrieved with the SC algorithm has been tested over five different samples (including vegetated plots and bare soil) in an agricultural area using one single image. The comparison with ground-truth data provided a bias near to zero and standard deviations of around 2 K, with bands 13 and 14 providing similar results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.