Abstract

The cerebellum develops from a restricted number of cell types that precisely organize to form the circuitry that controls sensory-motor coordination and some higher-order cognitive processes. To acquire an enhanced understanding of the molecular processes that mediate cerebellar development, we performed single-cell RNA-sequencing of 39,245 murine cerebellarcells at twelve critical developmental time points. Using recognized lineage markers, we confirmed that the single-cell data accurately recapitulate cerebellar development. We then followed distinct populations from emergence through migration and differentiation, and determined the associated transcriptional cascades. After identifying key lineage commitment decisions,focused analyses uncovered waves of transcription factor expression at those branching points. Finally, we created Cell Seek, a flexible online interface that facilitates exploration of the dataset. Our study provides a transcriptional summarization of cerebellar development at single-cell resolution that will serve as a valuable resource for future investigations of cerebellar development, neurobiology, and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.