Abstract

How hematopoietic stem cells (HSCs) maintain the balance of self-renewal and differentiation could be partially ascribed to asymmetric and symmetric division patterns. However, a simple and effective method to detect stem cell division patterns is lacking. In this study, we introduce a strategy to describe stem cells division patterns with high spatial resolution at the single-cell level. We show that the fate determinant, Numb, exhibits low expression levels in HSCs that increase upon the initiation of differentiation. Using this single-cell immunofluorescence technique, we found that HSCs mainly undergo symmetric self-renewal in the presence of only stem cell factor, but with the addition of trombopoietin this division pattern is transformed into a symmetric commitment dominant mode in vitro. In addition, our study indicated that the division pattern cannot be defined by cell size or the nuclear/cytoplasm ratio. These findings collectively demonstrate that this single-cell immunofluorescence technique provides a new biological strategy in stem cell division research, and can be more widely applied given its flexibility, easy operability, and inexpensiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call