Abstract

The primary objective of this study was to develop a simplified, rapid and authenticated protocol for sexing of caprine embryos. Polymerase chain reaction (PCR) is a powerful tool in preimplantation sex diagnosis, using embryo biopsy at the early developmental stage. Based on the amelogenin gene located on the conserved region of the sex chromosome, a primer pair was used and PCR was established to amplify a 262-bp fragment from the Xchromosome in female goat embryos and 262-bp fragments from the X chromosome and 202-bp fragments from the Y chromosome in male embryos. To validate the reliability of PCR, using the sex-determining region Y (SRY) gene located on the conserved region of Y chromosome, a primer pair was used and PCR was established to amplify a 122-bp fragment specific to the Y chromosome in male embryos. The in vitro-produced goat in vitro fertilisation (IVF)-embryos were made zona free by treating with pronase. The cell number in each embryo was counted before sexing. A single blastomere taken from these embryos was directly used as a template in PCR containing SRY and amelogenin gene-specific primers separately. Of 75 pronase-treated and 60 micromanipulated goat IVF embryos, 33 (44%) and 26 (43.33%) were confirmed as male and 42 (56%) and 34 (56.66%) as female, respectively. The sex-diagnosed embryos were kept in research vitro cleavage (RVCL) medium, and developed into 42.66% and 61.66% morulae and 13.33% and 23.33% blastocysts among pronase-treated and micromanipulated embryos, respectively. The AMELX gene-specific primer served as the internal control and did not interfere with amplification of the Y-specific sequence. In conclusion, a single blastomere sexing protocol based on the SRY and the amelogenin gene is simple, rapid, sensitive and efficient for sex determination in caprine early stage embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call