Abstract
Axioms in set theory typically have the form $\forall z \exists y\forall x(x \in y \leftrightarrow F x z )$, where $F$ is a relation which links $x$ with $z$ in some way. In this paper we introduce a particular linkage relation $L$ and a single axiom based on $L$ from which all the axioms of $\mathrm{Z}$ (Zermelo set theory) can be derived as theorems. The single axiom is presented both in informal and formal versions. This calls for some discussion of pertinent features of formal and informal axiomatic method and some discussion of pertinent features of the system $\mathrm{S}$ of set theory to be erected on the single axiom. $\mathrm{S}$ is shown to be somewhat stronger than $\mathrm{Z}$, but much weaker than $\mathrm{ZF}$ (Zermelo-Fraenkel set theory).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.