Abstract

Antigen-stimulated B lymphocytes either differentiate into IgM-secreting plasma cells or into memory B cells that secrete other immunoglobulin isotypes upon antigen restimulation. The mechanisms that generate and maintain memory B cells are poorly understood. Previously, we described a severe B lymphocyte deficiency in adult strain A/WySnJ mice compared to subline A/J. Here we show that the single, autosomal co-dominant locus responsible for the deficiency also diminishes IgG-secreting B cell formation without interfering with IgM-secreting plasma cell differentiation. A/WySnJ secondary IgG1 responses to the protein antigens hemocyanin, bovine gamma-globulin, ovalbumin, lysozyme and beta-galactosidase were 6- to 50-fold lower than A/J responses. The defect also decreased secondary IgG2a and IgG3 responses, and primary IgG1 and IgG2a responses. The reduced A/WySnJ secondary IgG1 response was not due to differential response kinetics or dose responsiveness, and could not be augmented to A/J levels by repeated immunizations. Serum IgG1, IgG2a and IgG3 levels from nonimmune A/WySnJ mice were similarly reduced. The secondary IgG1 response and splenic B cell percentage showed significant positive correlation (r = 0.72) in F2 mice, suggesting that a single locus controlled both traits. In contrast, A/WySnJ mice made good primary IgM responses to hemocyanin, beta-galactosidase, and the thymus-independent antigen trinitrophenyl-Ficoll. The A/WySnJ splenic adherent cells were competent in antigen-presenting function, and A/WySnJ immune T cells proliferated in response to antigen and provided the requisite B cell stimulatory signals for an IgG1 response. Together, our results suggest that A/WySnJ mice have a genetic lesion that causes a selective IgG immune response dysfunction. The absence of IgG-secreting cell precursors or a defect in precursor activation or differentiation are two possible mechanisms which could precipitate a selective IgG response dysfunction. We propose that the defective A/WySnJ and normal A/J strain pair offer the opportunity to use a natural genetic variation as a tool to investigate B lymphocyte development and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.