Abstract
The single-antenna technique proposed in this paper was developed for measuring the radar cross-section at near-field distances in a real environment, from reflection coefficient measurements on the antenna. The near-field radar cross-section is corrected with an analytical factor calculated as a ratio between the radar cross-section computed at far-field and near-field. The analytical correction factor takes into account the effects of the diffraction at the edges of the target at incidence angles higher than 20°. An improved, distance averaging technique is proposed to reduce the multipath propagation effects. A time-gating procedure is additionally used in order to better isolate the reflection from the target and to remove the real environment contributions. The method was successfully tested on a rectangular metallic plate as a target over a wide frequency band, at normal and oblique incidence angles; however, it might also work for arbitrarily shaped targets, because they can actually be divided into small rectangular patches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.