Abstract

Runt-homologous molecules are characterized by their DNA binding runt-domain which is highly conserved within bilaterians. The three mammalian runt-genes are master regulators in cartilage/bone formation and hematopoiesis. Historically these features evolved in Craniota and might have been promoted by runt-gene duplication events. The purpose of this study was therefore to investigate how many runt-genes exist in the stem species of chordates, by analyzing the number of runt-genes in what is likely to be the closest living relative of Craniota—amphioxus. To acquire further insight into the possible role of runt-genes in early chordate evolution we have determined the number of runt-genes in sea urchins and have analyzed the runt-expression pattern in this species. Our findings demonstrate the presence of a single runt-gene in amphioxus and sea urchin, which makes it highly likely that the stem species of chordates harbored only a single runt-gene. This suggests that runt-gene duplications occurred later in chordate phylogeny, and are possibly also associated with the evolution of features such as hematopoiesis, cartilage and bone development. In sea urchin embryos runt-expression involves cells of endodermal, mesodermal and ectodermal origin. This complex pattern of expression might reflect the multiple roles played by runt-genes in mammals. A strong runt-signal in the gastrointestinal tract of the sea urchin is in line with runt-expression in the intestine of nematodes and in the murine gastrointestinal tract, and seems to be one of the phylogenetically ancient runt-expression domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call