Abstract

The carboxy-terminal region of apolipoprotein (apo) A-I has been shown by mutagenesis or synthetic peptides to play an important role in lipid binding. However, the precise functional domain of the C-terminal remains to be defined. In this study, apoA-I Nichinan, a naturally occurring human apoA-I variant with a deletion of glutamic acid 235, was expressed in Escherichia coli to examine the effect of this mutation on the functional domain of apoA-I for lipid binding and related consequences. A dimyristoyl phosphatidylcholine binding study with recombinant (r-) proapoA-I Nichinan showed a significantly slow initial rate of lipid binding. On preincubation with human plasma lipoprotein fractions (d<1.225 g/mL) at 37 degrees C for 1 hour, (125)I-labeled normal r-proapoA-I was chromatographed as a single peak at the high density lipoprotein (HDL) fraction, whereas (125)I-labeled r-proapoA-I Nichinan was chromatographed into the HDL fraction as well as the free r-proapoA-I fraction (23% of radioactivity). Circular dichroism measurements showed that the alpha-helix content of lipid-bound r-proapoA-I Nichinan was reduced, being 62% (versus 73%) of normal r-proapoA-I. Nondenaturing gradient gel electrophoresis of reconstituted HDL particles assembled with r-proapoA-I Nichinan and normal r-proapoA-I showed similar particle size. To study cholesterol efflux, human skin fibroblasts were labeled with [(3)H]cholesterol, followed by incubation with either lipid-free r-proapoA-I or DMPC/r-proapoA-I complex. Fractional cholesterol efflux from [(3)H]cholesterol-labeled fibroblasts to lipid-free r-proapoA-I Nichinan or DMPC/r-proapoA-I Nichinan complexes was significantly reduced relative to that of normal r-proapoA-I or DMPC/r-proapoA-I during the 6-hour incubation. Binding assays of human skin fibroblasts by lipid-free r-proapoA-I showed that r-proapoA-I Nichinan was 32% less bound to fibroblasts than was normal r-proapoA-I. Our data demonstrate that the deletion of glutamic acid 235 at the C-terminus substantially reduces the lipid-binding properties of r-proapoA-I Nichinan, which may cause a reduction in its capacity to interact with plasma membranes as well as to promote cholesterol efflux from cultured fibroblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.