Abstract

Identifying the ligands or regions derived from them which parasites use to invade their target cells has proved to be an excellent strategy for identifying targets for vaccine development. Members of the reticulocyte-binding homologue family (PfRH), including RH5, have been implicated in invasion as adhesins binding to specific receptors on erythrocyte surface. The regions mediating PfRH5-RBC specific interactions have been identified here by fine mapping the whole PfRH5 protein sequence. These regions, called high activity binding peptides (HABPs), bind to a receptor which is sensitive to trypsin treatment and inhibit merozoite invasion of RBCs by up to 80%, as has been found for HABP 36727. Our results show that a single amino acid change in the HABP 36727 sequence modifies a peptide's 3D structure, thereby resulting in a loss of specific binding to human RBCs and its inhibition ability, while binding to Aotus RBC remains unmodified. Such invasion differences and binding ability produced by replacing a single amino acid in an essential molecule, such as PfRH5, highlight the inherent difficulties associated with developing a fully effective vaccine against malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.