Abstract

A bimetallic Cu(ii) complex as a novel antitumor chemodynamic therapy agent with glutathione (GSH) depletion properties is successfully synthesized and well characterized. In tumor cells, the Cu2+ ions of the complex are reduced to Cu+ ions by GSH and then catalyzed by the overexpressed H2O2 to generate highly cytotoxic hydroxyl radicals (˙OH) that kill cancer cells. The complex is quickly taken up by cancer cells and distributed in multiple organelles including mitochondria and the nucleus. The complex demonstrates good cytotoxicity toward various cancer cell lines. However, its toxicity toward normal cells is significantly lower than that toward cancer cells due to the limited expression of H2O2. In addition, the complex could arrest the cell cycle of the G0/G1 phase, thereby inducing apoptosis rather than necrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.