Abstract

This paper describes a novel application of Fourier transformed large-amplitude square-wave voltammetry (FT-SWV) in combination with three-phase edge plane pyrolytic graphite (EPPG) electrode to investigate both the kinetics and thermodynamics of anion transfer across the liquid/liquid interface using a conventional three-electrode arrangement. The transfer of anion from aqueous phase to organic phase was electrochemically driven by reversible redox transformation of confined redox probe in the organic phase. The kinetics and thermodynamics of anion transfer were inspected by a so-called "quasi-reversible maximum" (QRM) emerged in the profile of even harmonic components of power spectrum obtained by Fourier transformation (FT) of time-domain total current response and formal potential E(f) of first harmonic voltammogram obtained by application of inverse FT on the power spectrum. Besides, a systematic study of patterns of behavior of a variety of anions at the same concentration and a specific anion at different concentrations on kinetics and thermodynamics and the effect of amplitude ΔE on QRM were also conducted, aiming to optimize the measurement conditions. The investigation mentioned above testified that the ion transfer across the liquid/liquid interface controls the kinetics of overall electrochemical process, regardless of either FT-SWV or traditional SWV investigation. Moreover, either the kinetic probe f(max) or the thermodynamic probe E(f) can be served as a way for analytical applications. Interestingly, a linear relationship between peak currents of the first harmonic components and concentrations of perchlorate anion in the aqueous solutions can be observed, which is somewhat in accordance with a finding obtained by Fourier transformed alternating current voltammetry (FT-ACV) [Bond, A. M.; Duffy, N. W.; Elton, D. M.; Fleming, B. D. Anal. Chem. 2009, 81, 8801-8808]. This may open a new door for analytical detection of a wide spectrum of electrochemically inactive analytes of biological and environmental significance. Compared with traditional SWV, FT-SWV is much simpler and faster in ion transfer kinetics estimation and also provides a new access to thermodynamics evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call