Abstract

Whole field velocity and point temperature and surface heat flux measurements were performed to characterise the interaction of a single rising ellipsoidal air bubble with the free convection flow from a heated flat surface immersed in water at different angles of inclination. Two thermocouples and a hot film sensor were used to characterise heat transfer from the surface, while a time-resolved digital particle image velocimetry technique was used to map the bubble induced flow in a plane parallel to the surface. Heat flux fluctuations, preceding and following the bubble passage, were shown to correlate with the variation in both local flow velocities and fluid temperatures. The largest increases in heat transfer were recorded when both flow and temperature effects combined to enhance the convective cooling simultaneously. Such conditions were shown to be most likely met when the block was inclined at 45°, thus forcing the bubble to slide closer to the heated surface and hence to the thermal boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.