Abstract

Genetic algorithms are commonly used to solve many optimization and synthesis problems. An important issue facing the user is the selection of genetic algorithm parameters, such as mutation rate, mutation range, and number of crossovers. This paper demonstrates a real-valued genetic algorithm that simultaneously adapts several such parameters during the optimization process. This adaptive algorithm is shown to outperform its static counterparts when used to synthesize the phased array weights to satisfy specified far-field sidelobe constraints, and can perform amplitude-only, phase-only, and complex weight synthesis. When compared to conventional static parameter implementations, computation time is saved in two ways: 1) The algorithm converges faster and 2) the need to tune parameters by hand (generally done by repeatedly running the code with different parameter choices) is greatly reduced. By requiring less iteration to solve a given problem, this approach may benefit electromagnetic optimization problems with expensive cost functions, since genetic algorithms generally require many function evaluations to converge. The adaptive process also provides insight into the qualitative importance of parameters, and dynamically adjusting the mutation range is found to be especially beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.