Abstract
Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.