Abstract
It is possible to efficiently use traveltime and amplitude information to infer variations in velocity and Q. With little additional computation, terms accounting for source radiation pattern and receiver coupling may be included in the inversion. The methodology is based upon a perturbation approach to paraxial ray theory. The perturbation approach linearizes the relationship between velocity deviations and traveltime and amplitude anomalies. Using the technique, we infer the velocity and attenuation structure at a fractured granitic site near Raymond, California. A set of four well pairs are examined and each is found to contain two zones of strong attenuation. The velocity variations contain an upper low velocity region corresponding to the uppermost attenuating zone. The location of these zones agrees with independent well‐log and geophysical data. The velocity and attenuation anomalies appear to coincide with extensively fractured sections of the borehole and may indicate fracture zones rather than individual fractures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.