Abstract

The reaction and separation sections are the keys to the methanol-to-olefins (MTO) chemical processes, and they should be optimized to reduce the cost of production. This work develops a framework for the simultaneous design and optimization of the reaction and distillation sections. An optimization model with shortcut and rigorous methods combined is established for distillation columns to improve accuracy and efficiency. With the auxiliary devices and the selection of utilities considered, the reaction and distillation sections are integrated to maximize profits. The genetic algorithm targets the optimal parameters, including the catalyst’s coke content and reaction temperature, each column’s operating pressure, and the allocation of utilities and auxiliary devices. For the studied MTO process, the optimal reaction temperature and catalyst’s coke content were identified to be 496 °C and 7.8%, respectively. The maximum profit is 15.3% greater than that identified with only the separation section optimized, and the minimum total annual cost (TAC) of the separation section is 3.73% less.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.