Abstract

ABSTRACTThis article addresses a variant of the Discrete Cost Multicommodity Flow (DCMF) problem with random demands, where a penalty is incurred for each unrouted demand. The problem requires finding a network topology that minimizes the sum of the fixed installation facility costs and the expected penalties of unmet multicommodity demands. A two-stage stochastic programming with recourse model is proposed. A simulation-optimization approach is developed to solve this challenging problem approximately. To be precise, the first-stage problem requires solving a specific multi-facility network design problem using an exact enhanced cut-generation procedure coupled with a column generation algorithm. The second-stage problem aims at computing the expected penalty using a Monte Carlo simulation procedure together with a hedging strategy. To assess the empirical performance of the proposed approach, a Sample Average Approximation (SAA) procedure is developed to derive valid lower bounds. Results of extensive computational experiments attest to the efficacy of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.