Abstract

High dental metric variation in the large hominoid sample from the late Miocene site of Lufeng, China has been interpreted in two ways: (1) there are two morphologically similar species that broadly overlap in size, and (2) there is one species that is more highly sexually dimorphic in dental size, and perhaps in body size, than any extant primate. It has been claimed that the high levels of dental metric variation falsify the single-species hypothesis, which has been viewed implicitly as corroboration of the two-species hypothesis. However, the two-species hypothesis has not been subjected to testing. Here we test the two-species hypothesis using computer simulations to attempt to reproduce the unusual pattern of intrasexual and intersexual dental metric variation observed in the Lufeng postcanine dentition. Conditions of the simulation experiments were optimized to favor the two-species hypothesis. It was found that, although the Lufeng pattern of metric variation could be reproduced by sampling two species, the likelihood of this occurrence was very low even when the conditions were optimized to the point of improbability. We conclude that the likelihood is very high that the Lufeng sample is composed of one species that is more highly sexually dimorphic in the postcanine dentition than any extent primate species. If so, then the high levels of sexual dimorphism and intraspecific dental metric variation in this species violate the central assumption of methods that employ the coefficient of variation (CV) for paleotaxonomy, namely, that neither can lie outside the ranges observed among extant species. Thus, we further conclude that the CV must be used with caution when evaluating the taxonomic composition of fossil samples and, further, that it cannot be used to falsify a single-species hypothesis in any meaningful way. Other fossil hominoid samples with high measures of dental variation may indicate that considerable sexual size dimorphism typified many Eurasian middle–late Miocene hominoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call