Abstract

The selective laser melting (SLM) manufacturing process is a complex process involving moving a molten pool, rapid non-equilibrium solidification and solid phase transformation. If the thermal residual stress is too large, it may lead to warping, cracking and failure of the structures. The present work aims to establish a thermo-mechanical framework to predict temperature evolutions, molten pool configurations and residual stresses of materials in the SLM process, based on the toolpath-mesh intersection method. Moreover, the influences of the laser power, process parameters and mesh size have been discussed. The stress concentration occurred at the interface between the melt layer and substrate results in warping deformation of the materials. This work provides a novel method to reveal the resulting physical mechanism inside the molten pool in terms of residual stresses and distortions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.