Abstract

Here we investigate the combined effects of carbon nanotube (CNT) properties such as aspect ratio, curvature, and tunneling length and shear rate on the microstructure and electrical conductivities of CNT/polymer composites using fiber-level simulations. Electrical conductivities are calculated using a resistor network algorithm. Results for percolation thresholds in static systems agree with predictions and experimental measurements. We show that imposed shear flow can decrease the electrical percolation threshold by facilitating the formation of conductive aggregates. In agreement with previous research, we find that lower percolation thresholds are obtained for nanotubes with high aspect ratio. Our results also show that an increase in the curvature of nanotubes can make more agglomeration and reduce the percolation threshold in sheared suspensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.