Abstract

In this study, we developed a simulation method to predict the initial collection efficiency of a unipolar charged fiber and the particle deposition morphology in the electret filter composed of unipolar charged fibers. The particle sizes considered in this study were in the submicron range, and in the simulation method, Brownian motion of particles was also taken into consideration along with electrostatic forces acting on the particles. The simulation results were compared with other investigator's initial collection efficiency data, and it was found that simulation results are in good agreement with the experimental data. Based on this, we analyzed the effect of operating variables on the particle deposition morphology, which in turn affects the collection efficiency and pressure drop of the filter. In view of the simulation results on particle deposition morphology, it is clear that in the case of electret filters, particle deposition tends to take place onto the entire perimeter of fibers relatively uniformly, which may reduce the increase of pressure drop with time or extent of particle deposition compared to the conventional fibrous filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call