Abstract

We study the propagation of whistler-mode chorus in the magnetosphere by a spatially two-dimensional simulation code in the dipole coordinates. We set the simulation system so as to assume the outside of the plasmapause, corresponding to the radial distance from 3.9 to 4.1 RE in the equatorial plane and the latitudinal range from −15° to +15°, where RE is the Earth’s radius. We assume a model chorus element propagating northward from the magnetic equator of the field line at L=4 with a rising tone from 0.2 to 0.7 Ωe 0 in the time scale of 5,000 , where Ωe 0 is the electron gyrofrequency at the magnetic equator. For the initial density distribution of cold electrons, we assume three types of initial conditions in the outside of the plasmapause: without a duct (run 1), a density enhancement duct (run 2), and a density decrease duct (run 3). In run 1, the simulation result reveals that whistler-mode waves of the different wave frequencies propagate in the different ray path in the region away from the magnetic equator. In runs 2 and 3, the model chorus element propagates inside the assumed duct with changing wave normal angle. The simulation results show the different propagation properties of the chorus element in runs 2 and 3 and reveal that resultant wave spectra observed along the field line are different between the density enhancement and density decrease duct cases. The spectral modification of chorus by the propagation effect should play a significant role in the interactions between chorus and energetic electrons in the magnetosphere, particularly in the region away from the equator. The present study clarifies that the variation of propagation properties of chorus should be taken into account for the thorough understanding of resonant interactions of chorus with energetic electrons in the inner magnetosphere.

Highlights

  • Whistler-mode chorus emissions are generated in the region close to the magnetic equator outside the plasmapause during geomagnetically disturbed periods

  • While essential processes of the chorus generation occurring in the region close to the magnetic equator can be well described by the assumption of the parallel propagation, observation results have revealed that generated chorus elements become oblique and propagate across field lines in the region away from the equator (e.g., Santolík et al 2003)

  • We show the validity of the developed simulation code and study variations of propagation properties of chorus by assuming the density enhancement and decrease in the magnetosphere

Read more

Summary

Background

Whistler-mode chorus emissions are generated in the region close to the magnetic equator outside the plasmapause during geomagnetically disturbed periods. While whistler-mode waves propagating parallel to the magnetic field direction are circularly polarized waves with purely electromagnetic components, interactions can be treated based on the cyclotron resonance condition. Since a spatially one-dimensional simulation system along a magnetic field line has been used in these simulations, whistler-mode waves of purely parallel propagation are treated. While essential processes of the chorus generation occurring in the region close to the magnetic equator can be well described by the assumption of the parallel propagation, observation results have revealed that generated chorus elements become oblique and propagate across field lines in the region away from the equator (e.g., Santolík et al 2003). The present study clarifies that the variation of propagation properties of chorus should be taken into account for the thorough understanding of resonant interactions of chorus with energetic electrons in the inner magnetosphere. The ‘Conclusions’ section gives a summary of the present study

Methods
Results and discussion
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.