Abstract

The spatiotemporal variations of vegetation biomass of the ecological transect in northeast China were simulated. State variables of the model included green biomass and nongreen biomass of 12 vegetation categories and water contents of three soil layers. The simulated monthly green biomass was converted into NDVI, or Normalized Differential Vegetation Index of AVHRR (Advanced Very High Resolution Radiometry). A comparison between the modeled and the observed NDVI was made at 10′ spatial resolution. Atmospheric CO2 concentration and monthly precipitation were used as two driving variables for global change simulation. Effects of precipitation increments on percentage sunshine, relative humidity, radiation, evapotranspiration, and eventually soil water and plant growth, were considered. Two levels of CO2 concentration (present, doubled) and seven levels of precipitation increments (0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.30) were prescribed for a total of 14 simulation runs. A steady-state solution was obtained for each simulation run. The results of simulation showed that with the present climate conditions, doubling atmospheric CO2 concentration led approximately to a 20.3% increase in green biomass, 11.0% increase in nongreen biomass, 19.0% increase in green NPP, 12.8% increase in nongreen NPP, and 14.9% increase in overall average NPP at steady state. These increases go, respectively, to 32.9, 13.9, 30.0, 20.1, and 23.4% when a 30% precipitation increase was superimposed on the doubled CO2 concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.