Abstract

The polarization characteristics of ultrathin CsPbBr3 nanowires are investigated. Especially, for the height of cross-section of nanowires between 2 nm and 25 nm, the normalized intensity and polarization ratio ρ of CsPbBr3 nanowires with triangular, square and hexagonal cross-section shapes are compared. The results show that, along with the increase of the height of cross-section, the polarization ratios of these three nanowires decrease until T = 15 nm, and increase afterwards. Also, along with the increase of the cross-section area up to 100 nm2, the polarization ratios of these three nanowires increase too. In general, for the same height or area, the polarization ratio ρ of these nanowires follows ρ hexagon > ρ square > ρ triangle. Therefore, the nanowire with the hexagonal cross-section should be chosen, where for a cross-section height of 2 nm and a length-height ratio of 20:1, the maximal polarization ratio is 0.951 at the longitudinal center of the NW. Further, for the hexagonal NW with a cross-section height of 10 nm, the hexagonal NW with a length-height ratio of 45:1 exhibits the maximal polarization ratio at the longitudinal center of the NW. These simulation results predict the feasible size and shape of CsPbBr3 nanowire devices with high polarization ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call