Abstract

In-situ thin layer capping (TLC) is a promising sediment remediation approach that has been shown effective in immobilizing contaminants from releasing to natural biotas and human beings. This research intended to comprehend the effectiveness of Hg immobilization by TLC under turbation condition via a microcosm study. Three TLC caps with different activated carbon (AC)/clay combinations were applied to actual Hg-contaminated estuary sediment (76.0 ± 2.6 mg-Hg/kg). The caps with AC (3%) + bentonite (3%) and AC (3%) + kaolin (3%) were efficient in reducing both total mercury (THg) and methylmercury (MeHg) concentrations in overlying water by 75–95% and 64–98%, respectively, in the later stage of 75-d operation. In contrast, the AC (3%) + montmorillonite (3%) cap did not show a significant reduction on THg and MeHg in the overlying water, probably due to the unstable, suspension property of montmorillonite. The stable caps showed higher resistance to Hg breakthrough under occasional turbation events; however, a labile cap appeared to have dramatic Hg breakthrough when turbation occurred. It is therefore essential to note that with unstable caps, turbation events may result in unwanted secondary resuspension of contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.