Abstract
The process of nonlinear resonant excitation of ion oscillations in a linear trap is studied. There is still no detailed simulation of the resonance peak in the literature. We propose to use the excitation contour to describe the collective ion resonance. The excitation contour is a resonant mass peak obtained by the trajectory method with the Gaussian distribution of the initial coordinates and velocities. The following factors are considered: excitation time, low order hexapole and octopole harmonics with amplitudes A3 and A4, the depth of the initial ion cloud position. These multipoles are used for selective ion ejection from linear ion trap. All these factors affect the ion yield and the shape of the contours. Obtained data can be useful for control of such processes as ion fragmentation, ion isolation, ion activation, and ion ejection. Simulated resonance peaks are important for the theoretical description of the ion collective nonlinear resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.