Abstract

Inverse probability weighting (IPW) and g-computation are commonly used in time-varying analyses. To inform decisions on which to use, we compared these methods using a plasmode simulation based on data from the Effects of Aspirin in Gestation and Reproduction (EAGeR) Trial (June 15, 2007-July 15, 2011). In our main analysis, we simulated a cohort study of 1,226 individuals followed for up to 10 weeks. The exposure was weekly exercise, and the outcome was time to pregnancy. We controlled for 6 confounding factors: 4 baseline confounders (race, ever smoking, age, and body mass index) and 2 time-varying confounders (compliance with assigned treatment and nausea). We sought to estimate the average causal risk difference by 10 weeks, using IPW and g-computation implemented using a Monte Carlo estimator and iterated conditional expectations (ICE). Across 500 simulations, we compared the bias, empirical standard error (ESE), average standard error, standard error ratio, and 95% confidence interval coverage of each approach. IPW (bias = 0.02; ESE = 0.04; coverage = 92.6%) and Monte Carlo g-computation (bias = -0.01; ESE = 0.03; coverage = 94.2%) performed similarly. ICE g-computation was the least biased but least precise estimator (bias = 0.01; ESE = 0.06; coverage = 93.4%). When choosing an estimator, one should consider factors like the research question, the prevalences of the exposure and outcome, and the number of time points being analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.