Abstract

Epidemics require dynamic response strategies that encompass a multitude of policy alternatives and that balance health, economic and societal considerations. We propose a simulation–optimization framework to aid policymakers select closure, protection and travel policies to minimize the total number of infections under a limited budget. The proposed framework combines a modified, age-stratified SEIR compartmental model to evaluate the health impact of response strategies and a Genetic Algorithm to effectively search for better strategies. We implemented our framework on a real case study in Nova Scotia to devise optimized response strategies to COVID-19 under different budget scenarios and found a clear trade-off between health and economic considerations. Closure policies seem to be the most sensitive to policy restrictions, followed by travel policies. On the other hand, results suggest that practising social distancing and wearing masks are necessary whenever their economic impacts are bearable. The framework is generic and can be extended to encompass vaccination policies and to use different epidemiological models and optimization methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.