Abstract

Quantifying rill bed incision provides fundamental information for process-based erosion modeling; while the morphodynamic and hydrodynamic mechanism in bed incision processes are still unclear. Thus, experiments were conducted to examine rill bed incision processes in upland concentrated flows. DEMs (2 mm × 2 mm resolution) obtained by photogrammetry were used for rill bed morphology analysis. Rill channel (2.0 m-long, 0.08 m-wide and 0.15 m-deep) with two slope gradients (15° and 20°) were subjected to four overland flow rates (1.0, 2.0, 3.0 and 4.0 L min−1). The results showed that sediment delivery, rill bed incision rate and average rill depth increased with inflow rate and bed slope. Sediment delivery increased from 0.060 to 0.226 kg min−1 per 1 L min−1 inflow increment and from 0.043 to 0.207 kg min−1 when bed slope increased from 15° to 20°. In a well-developed rill channel, rill bed incision could be divided into three phases: pre-headcut formation (dominated by rill flow shear stress), headcut incision (dominated by headcut advancing) and post-headcut incision (dominated by rill flow shear stress). Headcut incision phase, which only accounted for <15% of total experimental time, produced >65% of rill bed sediment. In the pre-headcut formation phase, rill flow velocity, shear stress and stream power increased with increases of inflow rate and slope gradient. Conversely, flow velocity showed no evident trend with increased inflow rate and bed slope during headcut incision phase. Initial headcut advancing rate could be predicted by a non-linear function based upon soil characteristics, rill flow shear stress and headcut height. Sediment delivery showed a power function with the product of inflow rate and squared bed slope. Because rill bed incision is dominated by headcut advancement and incision, practices for controlling headcut initiation should be implemented to decrease hillslope soil loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.