Abstract

A parametrization of the density of states (DOS) near the band edge of phosphorus-doped crystalline silicon is derived from photoluminescence and conductance measurements, using a recently developed theory of band gap narrowing. It is shown that the dopant band only “touches” the conduction band at the Mott (metal-insulator) transition and that it merges with the conduction band at considerably higher dopant densities. This resolves well-known contradictions between conclusions drawn from various measurement techniques. With the proposed DOS, incomplete ionization of phosphorus dopants is calculated and compared with measurements in the temperature range from 300to30K. We conclude that (a) up to 25% of dopants are nonionized at room temperature near the Mott transition and (b) there exists no significant amount of incomplete ionization at dopant densities far above the Mott transition. In a forthcoming part II of this paper, equations of incomplete ionization will be derived that are suitable for implementation in device simulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.