Abstract

paper presents a new model developed to aid the planning and the analysis of communications-intensive Mobile Ad Hoc Networks (MANET), with respect to the allocation of energy-critical equipment. A graphical simulation tool and a new hybrid genetic algorithm (HGA) are introduced. They work together to estimate the required amount of deployed battery supplies and the probability of success of real operations. At each period, a hybrid genetic algorithm with reparation of individuals and heuristic crossover and mutation operators finds efficient routes that preserve maximum energy availability at network level, reducing the probability of communications disruption. The simulation tool implements mobility models derived from experts' advices and may be used in missions like military and search-and-rescue operations. One may easily include new models to represent the movement of nodes in other specific missions, including trace data. The system is flexible and customizable, providing a means to mission planning, including the provision of adequate power supply for the large number of devices typically included within a MANET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.