Abstract
This paper's scope is to develop an intelligible Finite Element Analysis (FEA) method, utilized to determine and quantify the assembly forces required to assemble the snap-fit component, which is made of a glass fiber reinforced polyamide (type 6, 60% glass fiber, PA6 GF50), as well as to determine the snap-fit joint maximum retention forces. The proposed FEA method is to be used in Abaqus as a standard solver type, considering its operation ease and simplicity in creating the model. The setback of implementing the standard solver approach is that during the snap-fit assembly, at a certain point in the simulation, the behavior is transformed from a static movement to a dynamic one, precisely when the snap moves backward in the assembled position, at this point, due to the dynamic behavior of the simulation, the solution will continue to diverge, and the convergence is not achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.