Abstract

With the increasing speed of high-speed trains and the deteriorating operation environment of axle-box system, the dynamic performance of axle-box bearing directly affects the stability and safety of operation. In this paper, a bearing-vehicle-track coupling dynamic model is established, and its effectiveness is verified by field tests. The simulation results of the coupling dynamic model including wheel-polygonal wear show that the effect of high order polygonal wheel wear (17th ∼ 21st order) on the axle-box system is greater than that of low order wheel wear (1st ∼ 5th order). The frequency domain of axle-box vertical vibration acceleration excited by high order wheel-polygonal wear is mainly distributed in 400 ∼ 600 Hz. The low order polygonal wheel wear amplitude has little effect on the bearing roller-outer raceway contact load. When the wear amplitude of 20th order polygonal wheel is 0.06 mm, the roller-outer raceway contact load is 27.22% higher than that when the wear amplitude is 0.04 mm. In order to avoid bearing failure caused by excessive bearing roller-raceway contact force, the amplitude of 20th order polygonal wheel wear should reduce to less than 0.04 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.