Abstract

Shading devices are the integrated components of building envelopes, which are designed to protect interiors from the excessive amount of direct and indirect solar radiation. Blocking the sunlight, these devices reduce the operational cost of cooling systems, which implies an inverse proportionality between the cooling energy consumption and desired thermal comfort. Therefore, in this study, a unique design for dynamic shading devices of an office building, located in the hot and humid climatic region, is proposed and presented from the early stages of the architectural design process. Above all, an innovative parametric model is created using the Grasshopper algorithmic modeling environment with the Honeybee and Ladybug plug-ins to overcome all difficulties of the manual design process. By employing the optimization plug-in of the Grasshopper software named Octopus, a performance evaluation based multi-objective optimization (MOO) method is introduced to find different cell dimensions of the devices for various orientations, south, east and west, of the office building. This research also investigates the potential of the proposed shading devices based on two major performance aspects, reducing the cooling load while increasing the thermal comfort of the office building, located at Bayrakli, Izmir, Turkey, latitude: 38° 27′ 44.00″ N and longitude: 27° 10′ 0.00″ E. The lowest cooling energy consumption is estimated as 8.35 kWh for 22nd of July 12:00 a.m. for the west orientation with the dimension of 100 × 100 cm, among other cell dimensions, which are 50 × 200 cm and 200 × 50 cm. The novelty lies behind the optimization of the conflicting performance features and the design of the new generation dynamic shading devices which would shed light on new shading device era.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.