Abstract

ABSTRACTClassification models can demonstrate apparent prediction accuracy even when there is no underlying relationship between the predictors and the response. Variable selection procedures can lead to false positive variable selections and overestimation of true model performance. A simulation study was conducted using logistic regression with forward stepwise, best subsets, and LASSO variable selection methods with varying total sample sizes (20, 50, 100, 200) and numbers of random noise predictor variables (3, 5, 10, 15, 20, 50). Using our critical values can help reduce needless follow-up on variables having no true association with the outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.