Abstract

We observe n sequences at each of m sites and assume that they have evolved from an ancestral sequence that forms the root of a binary tree of known topology and branch lengths, but the sequence states at internal nodes are unknown. The topology of the tree and branch lengths are the same for all sites, but the parameters of the evolutionary model can vary over sites. We assume a piecewise constant model for these parameters, with an unknown number of change-points and hence a transdimensional parameter space over which we seek to perform Bayesian inference. We propose two novel ideas to deal with the computational challenges of such inference. Firstly, we approximate the model based on the time machine principle: the top nodes of the binary tree (near the root) are replaced by an approximation of the true distribution; as more nodes are removed from the top of the tree, the cost of computing the likelihood is reduced linearly in n. The approach introduces a bias, which we investigate empirically. Secondly, we develop a particle marginal Metropolis-Hastings (PMMH) algorithm, that employs a sequential Monte Carlo (SMC) sampler and can use the first idea. Our time-machine PMMH algorithm copes well with one of the bottle-necks of standard computational algorithms: the transdimensional nature of the posterior distribution. The algorithm is implemented on simulated and real data examples, and we empirically demonstrate its potential to outperform competing methods based on approximate Bayesian computation (ABC) techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.