Abstract

A derivative-free simulated annealing driven multi-start algorithm for continuous global optimization is presented. We first propose a trial point generation scheme in continuous simulated annealing which eliminates the need for the gradient-based trial point generation. We then suitably embed the multi-start procedure within the simulated annealing algorithm. We modify the derivative-free pattern search method and use it as the local search in the multi-start procedure. We study the convergence properties of the algorithm and test its performance on a set of 50 problems. Numerical results are presented which show the robustness of the algorithm. Numerical comparisons with a gradient-based simulated annealing algorithm and three population-based global optimization algorithms show that the new algorithm could offer a reasonable alternative to many currently available global optimization algorithms, specially for problems requiring ‘direct search’ type algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.