Abstract
The Capacitated Vehicle Routing Problem with Time Windows (VRPTW) consists in determining the routes of a given number of vehicles with identical capacity stationed at a central depot which are used to supply the demands of a set of customers within certain time windows. This is a complex multi-constrained problem with industrial, economic, and environmental implications that has been widely analyzed in the past. This paper deals with a multi-objective variant of the VRPTW that simultaneously minimizes the travelled distance and the imbalance of the routes. This imbalance is analyzed from two perspectives: the imbalance in the distances travelled by the vehicles, and the imbalance in the loads delivered by them. A multi-objective procedure based on Simulated Annealing, the Multiple Temperature Pareto Simulated Annealing (MT-PSA), is proposed in this paper to cope with these multi-objective formulations of the VRPTW. The procedure MT-PSA and an island-based parallel version of MT-PSA have been evaluated and compared with, respectively, sequential and island-based parallel implementations of SPEA2. Computational results obtained on Solomon’s benchmark problems show that the island-based parallelization produces Pareto-fronts of higher quality that those obtained by the sequential versions without increasing the computational cost, while also producing significant reduction in the runtimes while maintaining solution quality. More specifically, for the most part, our procedure MT-PSA outperforms SPEA2 in the benchmarks here considered, with respect to the solution quality and execution time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.