Abstract
Network alignment is a challenging computational problem that identifies node or edge mappings between two or more networks, with the aim to unravel common patterns among them. Pairwise network alignment is already intractable, making multiple network comparison even more difficult. Here, we introduce a heuristic algorithm for the multiple maximum common edge subgraph problem that is able to detect large common substructures shared across multiple, real-world size networks efficiently. Our algorithm uses a combination of iterated local search, simulated annealing and a pheromone-based perturbation strategy. We implemented multiple local search strategies and annealing schedules, that were evaluated on a range of synthetic networks and real protein-protein interaction networks. Our method is parallelized and well-suited to exploit current multi-core CPU architectures. While it is generic, we apply it to unravel a biochemical backbone inherent in different species, modeled as multiple maximum common subgraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.