Abstract

A thin laminated composite is proposed in this article for highly efficient microwave absorption at both high frequency and low frequency. It is composed of two layers of carbon-fiber-reinforced planar structure. In each layer, periodically arranged fiber array with the axes of the fibers parallel to each other is embedded into a ceramic matrix which is used to bind the fibers together and to provide necessary mechanical or chemical properties. Stacking up two layers of the planar structure with the fibers in different layers orientated into different directions produces a lamina which can be further parallely stacked up to provide the whole laminated material. The influence of the structural and electromagnetic parameters on the microwave absorption efficiency is first studied in detail with scattering matrix and boundary-mode matching method. Then the genetic algorithm and the sequential quadratic programming methods are used to form a two-step strategy based on the mode-matching method to optimize the structural and electromagnetic parameters for a highly efficient microwave absorption in both high-frequency and low-frequency bands. Numerical examples are also given to demonstrate the high absorption efficiency of the designed laminated material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.